Exercise 21

- (a) If \$3000 is invested at 5% interest, find the value of the investment at the end of 5 years if the interest is compounded (i) annually, (ii) semiannually, (iii) monthly, (iv) weekly, (v) daily, and (vi) continuously.
- (b) If A(t) is the amount of the investment at time t for the case of continuous compounding, write a differential equation and an initial condition satisfied by A(t).

Solution

Part (a)

The value of an investment that has compounding interest (n times per year with an interest rate r) is

$$A(t) = A_0 \left(1 + \frac{r}{n}\right)^{nt}$$

The amount owed back at the end of 5 years if the interest is compounded annually is

$$A(5) = 3000 \left(1 + \frac{0.05}{1}\right)^{(1)5} \approx \$3828.84.$$

The amount owed back at the end of 5 years if the interest is compounded semiannually is

$$A(5) = 3000 \left(1 + \frac{0.05}{2}\right)^{(2)5} \approx \$3840.25.$$

The amount owed back at the end of 5 years if the interest is compounded monthly is

$$A(5) = 3000 \left(1 + \frac{0.05}{12}\right)^{(12)5} \approx \$3850.08.$$

The amount owed back at the end of 5 years if the interest is compounded weekly is

$$A(5) = 3000 \left(1 + \frac{0.05}{\frac{365}{7}}\right)^{\left(\frac{365}{7}\right)5} \approx \$3851.61.$$

The amount owed back at the end of 5 years if the interest is compounded daily is

$$A(5) = 3000 \left(1 + \frac{0.05}{365}\right)^{(365)5} \approx \$3852.01.$$

The amount owed back at the end of 5 years if the interest is compounded continuously is

$$A(5) = \lim_{n \to \infty} 3000 \left(1 + \frac{0.05}{n} \right)^{(n)5} = 3000e^{0.05(5)} \approx \$3852.08$$

www.stemjock.com

Part (b)

If the interest is compounded continuously, the amount owed back after t years is

$$A(t) = A_0 e^{rt},$$

where A_0 is the amount borrowed and r is the interest rate.

$$A(t) = 3000e^{0.05t}$$

Take the derivative and write it in terms of A(t) to get the differential equation.

$$\frac{dA}{dt} = \frac{d}{dt}(3000e^{0.05t}) = 3000(0.05e^{0.05t}) = 0.05(3000e^{0.05t}) = 0.05A(t)$$

The initial condition associated with it is

$$A(0) = 3000e^{0.05(0)} = 3000.$$